Detox before Energise: References by Chapter.

 

Part 2 — Revive

  • 1. Council on Environmental Health. (2011). Policy statement — Chemical-management policy: Prioritizing children’s health. Pediatrics. 127(5), pp. 983–990.

    2. Paulose, T. et al. (2014). Estrogens in the wrong place at the wrong time: Fetal BPA exposure and mammary cancer. Reproductive toxicology (Elmsford, N.Y.). 54, pp. 58–65.

    3. Alcock, R. et al. (2003). Joint WHO/convention task force on the health aspects of air pollution: Health risks of persistent organic pollutants from long-range transboundary air pollution. Available at: https://www.euro.who.int/__data/assets/pdf_file/0009/78660/e78963.pdf

    4. Eladak, S. et al. (2015). A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. Fertility & Sterility. 103(1), pp. 11–21.

    5. Source: https://www.breastcanceruk.org.uk/our-campaigns/no-more-bpa

    6. Martínez, MÁ. et al. (2020). Bisphenol A analogues (BPS and BPF) present a greater obesogenic capacity in 3T3-L1 cell line. Food & Chemical Toxicology. 140, 111298. doi:10.1016/j.fct.2020.111298

    7. Berghuis, SA. et al. (2018). Prenatal exposure to persistent organic pollutants and cognition and motor performance in adolescence. Environment International. 121. pp. 13-22.

    8. Jacobson, JL. Jacobson, SW. (1996). Intellectual Impairment in Children Exposed to Polychlorinated Biphenyls in Utero. The New England journal of medicine. 335, pp. 783–789.

    9. Seelbach, M. et al. (2010). Polychlorinated biphenyls disrupt blood–brain barrier integrity and promote brain metastasis formation. Environmental Health Perspectives. 118(4), pp. 479-484. Available at: https://ehp.niehs.nih.gov/doi/pdf/10.1289/ehp.0901334. Last accessed: 13th March 2019.

    10. Tillett, T. (2010). Chew on This: Persistent Organic Pollutants May Promote Insulin Resistance Syndrome. Environmental Health Perspectives. 118(4), p. 173.

    11. Mitro, S. et al. (2016). Consumer product chemicals in indoor dust: A quantitative meta-analysis of U.S. Studies. Environmental Science & Technology. 50(19), pp.10661–10672.

    12. Source: www.niehs.nih.gov/research/supported/assets/docs/j_q/phthalates_the_everywhere_ chemical_handout_508.pdf

    13. Costa, LG. et al. (2014). Neurotoxicants are in the air: Convergence of human, animal, and in vitro studies on the effects of air pollution on the brain. BioMed Research International. 2014, ID 736385.

    14. Pärt, P. et al. (2013). Environment and human health. Joint EEA-JRC Report. EUR Report 25933 EN. European Environment Agency, Copenhagen, Denmark. ISSN 1725–9177.

    15. Wagner, M. et al. (2013). Identification of putative steroid receptor antagonists in bottled water: Combining bioassays & high-resolution mass spectrometry. PLoS ONE. 8(8), e72472.

    16. Relton, C. Strong, M. Holdsworth, M. (2012). Plastic food packaging encourages obesity. The British Medical Journal. 344, e3824–e3824.

    17. Source: https://www.exquisiteprivatechef.co.uk/its-all-about-food/wash-your-fruits-vegetables

    18. Barrett, JR. (2010). Attention-worthy association: Prenatal phthalate exposure and later child behavior. Environmental Health Perspectives. 2014(1), p. 172.

    19. Carter, C. Blizard, R. (2016). Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products. Neurochemistry International. 101, pp.83–109.

    20. Noel, J. et al. (2017). Variables associated with olfactory disorders in adults: A U.S. population-based analysis. World Journal of Otorhinolaryngology - Head and Neck Surgery. 3(1), pp.9–16.

    21. Hughes, BW. Sealey, LA. Bagasra, O. (2016). Mechanism of male gender bias in neuroblastoma cell lines exposed to fragrances: A link to autism spectrum disorder. Expert Opinion on Environmental Biology. 5(3). doi: 10.4172/2325-9655.1000137

    22. Chen, Y. Liu, L. (2012). Modern methods for delivery of drugs across the blood–brain barrier. Advanced Drug Delivery Reviews. 64(7), pp.640–665.

    23. Leszczynski, D. (2014). The grand challenge: use of a new approach in developing policies in the area of radiation and health. Frontiers in Public Health. 2(50). doi:10.3389/fpubh.2014.00050

    24. Xu, S. et al. (2019). Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Research. 1311, pp. 189–196.

    25. Leszczynski, D. (2014). Effect of GSM mobile phone radiation on blood-brain barrier. Available at: http://www.der-mast-muss-weg.de/pdf/studien/Leszczynski_BHS_2002.pdf. Last accessed: 13th March 2019

  • 1. Slavich, GM. (2015). Understanding inflammation, its regulation, and relevance for health: A top scientific and public priority. Brain, Behavior, and Immunity. 45, pp. 13–14. doi.org/10.1016/j.bbi.2014.10.012

    2. Furman, D. et al. (2019). Chronic inflammation in the etiology of disease across the life span. Nature Medicine. 25(12), pp. 1822–1832. doi: 10.1038/s41591-019-0675-0

    3. Source: Blue Cross Blue Shield Association. Available at: https://www.bcbs.com/the-health-of-america/reports/early-onset-dementia-alzheimers-disease-affecting-younger-american-adults?utm_source=prnw&utm_medium=&utm_content=&utm_campaign=&utm_term=

    4. Source: BBC. Available at: https://www.bbc.co.uk/news/science-environment-43389031

    5. Source: The Guardian. Available at: https://www.theguardian.com/environment/2017/jun/28/a-million-a-minute-worlds-plastic-bottle-binge-as-dangerous-as-climate-change

    6. House of Commons Environmental Audit Committee. (2017). Plastic bottles: Turning back the plastic tide - First report of session 2017–19. Available at: https://publications.parliament.uk/pa/cm201719/cmselect/cmenvaud/339/339.pdf. Last accessed June 1st, 2019.

    7. Source: Sky News. Available at: https://news.sky.com/story/thousands-of-tons-of-uk-plastic-dumped-across-world-11218595

    8. Source: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/338268/HPA_STYRENE_Toxicological_Overview_v1.pdf

    9. Wakefield, JC. (2007). Styrene toxicological overview. [online] HPA Centre for Radiation, Chemical and Environmental Hazards, pp. 1–10. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/338268/HPA_STYRENE _Toxicological_Overview_v1.pdf. Last accessed: 1 Jun. 2019.

    10. Bagchi, M. et al. (2007). Oxidative stress and neurodegeneration. In: Gupta, RC. Veterinary Toxicology. Basic and Clinical Principles. London: Academic Press. pp. 313–334.

    11. Gupta, PK. (2016). Fundamentals of Toxicology Essential Concepts and Applications. Fundamentals of Toxicology. Essential Concepts and Applications. Oxford: Academic Press. pp. 185-202.

    12. NTP. (2000). Toxicology and carcinogenesis studies of naphthalene (cas no. 91-20-3) in F344/N rats (inhalation studies). National Toxicology Program technical report series. (500), pp. 1–173.

    13. Saborit, JMD. et al. (2009). Measurement of personal exposure to volatile organic compounds and particle associated PAH in three UK regions. Environmental Science & Technology. 43, pp. 4582–4588.

    14. U.S. Environmental Protection Agency. (cas no. 91-20-3). Available at: https://archive.epa.gov/epawaste/hazard/wastemin/web/pdf/napthal.pdf.

    15. Tawfik, MS. Huyghebaert, A. (1998). Polystyrene cups and containers: Styrene migration. Food Additives & Contaminants. 15(5), pp. 592–599. doi:10.1080/02652039809374686

    16. Salamanca, JC. et al. (2018). E-cigarettes can emit formaldehyde at high levels under conditions that have been reported to be non-averse to users. Scientific Reports. 8(1), 7559. doi:10.1038/s41598-018-25907-6

    17. Source: American Cancer Society. Available at: https://www.cancer.org

    18. Nowshad, F. Islam, MN. Khan, MS. (2018). Concentration and formation behavior of naturally occurring formaldehyde in foods. Agriculture & Food Security. 7:17. doi:10.1186/s40066-018-0166-4

    19. Available at: https://hpd.nlm.nih.gov/cgi-bin/household/search?tbl=TblChemicals&queryx=50-00-0.

    20. Spencer, PS. et al. (1984). Neurotoxic properties of musk ambrette. Toxicology & Applied Pharmacology. 75, pp. 571–575.

    21. Research Institute for Fragrance Materials. (1979). 4-Acetyl-6-tert-butyl-1 ,ldimethylindane. In: Opdyke, DLJ. Monographs on Fragrance Raw Materials. Oxford: Pergamon Press. p. 31.

    22. Chase, D. et al. (2012). Occurrence of synthetic musk fragrances in effluent and non-effluent impacted environments. Science of The Total Environment. 416, pp. 253-260.

    23. Hutter, H. et al. (2005). Blood concentrations of polycyclic musks in healthy young adults. Chemosphere. 59(4), pp.487-492.

    24. Hutter, H. et al. (2010). Higher blood concentrations of synthetic musks in women above fifty years than in younger women. International Journal of Hygiene & Environmental Health. 213(2), pp. 124–130.]

    25. Lu, Y. et al. (2010). Occurrence of Synthetic Musks in Indoor Dust from China and Implications for Human Exposure. Archives of Environmental Contamination and Toxicology. 60(1), pp. 182–189.

    26. Bitsch, N. et al. (2002). Estrogenic activity of musk fragrances detected by the E-screen assay using human MCF-7 cells. Archives of Environmental Contamination and Toxicology. 43(3), pp. 257–264.

    27. McGinty, D. Letizia, CS. Api, AM. (2011). Fragrance material review on ethylene brassylate. Food and Chemical Toxicology. 49, S174–S182. doi:10.1016/j.fct.2011.07.023 

    28. Centers for Disease Control and Prevention (CDC). Fourth national report on human exposure to environment chemicals updated tables. January 2017, volume 1.

    29. Myridakis, A. et al. (2016). Exposure of preschool-age Greek children (RHEA cohort) to bisphenol A, parabens, phthalates, and organophosphates. Environmental Science & Technology. 50(2), pp. 932–341.

    30. Honda, M. Robinson, M. Kannan, K. (2018). Parabens in human urine from several Asian countries, Greece, and the United States. Chemosphere. 201, pp. 13–19.

    31. Carmona, E. Andreu, V. Picó, Y. (2014). Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: From waste to drinking water. Science of the Total Environment. 484, pp. 53-63.

    32. Xue, J. Kannan, K. (2016). Accumulation profiles of parabens and their metabolites in fish, black bear, and birds, including bald eagles and albatrosses. Environment International. 94, pp. 546–553.

    33. Boberg, J. et al. (2010). Possible endocrine disrupting effects of parabens and their metabolites. Reproductive Toxicology. 30(2), pp. 301–312.

    34. Routledge, EJ. et al. (1998). Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic. Toxicology & Applied Pharmacology. 153(1), pp. 12–19.

    35. SCCS: Scientific Committee on Consumer Safety. (2010). Opinion on Parabens. pp. 1–36. doi:10.2772/30176

    36. SCCS: Scientific Committee on Consumer Safety. (2011). Clarification on Opinion SCCS/1348/10 in the light of the Danish clause of safeguard banning the use of parabens in cosmetic products intended for children under three years of age. pp. 1–51. doi:10.2772/20395

    37. Fransway, AF. et al. (2019). Parabens. Dermatitis. 30(1), pp. 3–31.

    38. Source: Stockholm Convention COP 9 (2019). Available at:http://www.brsmeas.org/2019COPs/MeetingDocuments/tabid/7832/language/en-US/Default.aspx. Last accessed: June 23rd 2019.

    39. (2022). The Enviromenta-LIST: The Current State of PFAS in Europe. Available at: https://www.analyteguru.com/t5/Blog/The-Enviromenta-LIST-The-Current-State-of-PFAS-in-Europe/ba-p/15431

    40. EWG. (2022). PFAS Contamination in the U.S. Available at: https://www.ewg.org/interactive-maps/pfas_contamination.

    41. Faber, S. (2020). For 20-plus years, EPA has failed to regulate ‘forever chemicals’. Available at: https://www.ewg.org/research/20-plus-years-epa-has-failed-regulate-forever-chemicals.

    42. Hayes, J. (2022). Dozens of Coast Guard bases could be contaminated with ‘forever chemicals’. Available at: https://www.ewg.org/news-insights/news/2022/07/dozens-coast-guard-bases-could-be-contaminated-forever-chemicals.

    43. Source: European Environmental Bureau (EEB). Available at: https://eeb.org/work-areas/industry-health/pfas/#:~:text=Hundreds%20of%20PFAS%20are%20produced,PFAS%20do%20in%20fact%20degrade.

    44. European Human Biomonitoring Initiative (2022). HBM4EU. Policy brief: PFAs. Available at: https://www.hbm4eu.eu/wp-content/uploads/2022/05/Policy-Brief-PFAS.pdf

    45. Source: https://www.hbm4eu.eu/wp-content/uploads/2018/12/HBM4EU_PFAS_brief_v2.pdf

    46. Source: https://www.eea.europa.eu/publications/emerging-chemical-risks-in-europe

    47. Ipen.org. (2019). PFAS situation reports in twelve Middle Eastern and Asian countries support Stockholm Convention listing. Available at: https://ipen.org/news/pfas-situation-reports-twelve-middle-eastern-and-asian-countries

    The report can be found here: https://ipen.org/sites/default/files/documents/pfas_pollution_across_the_middle_east_and_asia.pdf

    48. Jbeily, M. et al. (2018). Cholesterol-like effects of a fluorotelomer alcohol incorporated in phospholipid membranes. Scientific Reports. 8(2154). doi:10.1038/s41598-018-20511-0

    49. Boronow. KE. et al. (2019). Serum concentrations of PFASs and exposure-related behaviours in African American and non-Hispanic white women. Journal of Exposure Science and Environmental Epidemiology. 29, pp. 206–217 doi:10.1038/s41370-018-0109-y

    50. Pandey, KB. Rizvi, SI. (2009). Plant polyphenols as dietary antioxidants in human health & disease. Oxidative Medicine & Cellular Longevity. 2(5), pp. 270–278. doi:10.4161/oxim.2.5.9498

    51. Cvejić, JH. et al. (2017). Polyphenols. In: Galanakis, CM. Nutraceutical and functional food components. Effects of innovative processing techniques. London: Academic Press. pp. 203–258.

    52. Source CDC. (2010) Environmental phenols in urine. NHANES 2007-2008 (revised 21st June 2010). Available at: https://wwwn.cdc.gov/nchs/data/nhanes/2007-2008/labmethods/pp_e_met_phenols.pdf

    53. Agency for Toxic Substances & Disease Registry. (2008). Public health statement Phenol CAS #108-95-2. Division of Toxicology and Environmental Medicine. Available at: https://www.atsdr.cdc.gov/ToxProfiles/tp115-c1-b.pdf. Last accessed: June 25th 2019.

    54. Rainsford, SG. Lloyd Davies, TA. (1965). Urinary excretion of phenols by men exposed to vapour of benzene: A screening test. British Journal of Industrial Medicine. 22, pp. 21–26.

    55. Source: https://pubchem.ncbi.nlm.nih.gov/compound/Benzene

    56. Smith, MT. (1996). Overview of benzene-induced aplastic anaemia. European journal of haematology. Supplementum. 60, pp. 107–110.

    57. Schober, W. et al. (2014). Use of electronic cigarettes (e-cigarettes) impairs indoor air quality and increases FeNO levels of e-cigarette consumers. International Journal of Hygiene & Environmental Health. 217(6), pp. 628-637. doi:10.1016/j.ijheh.2013.11.003

    58. Department for Environment, Food and Rural Affairs. (2019). DEFRA National Statistics Release: Emissions of air pollutants in the UK, 1970 to 2017.

    59. Wei, X. et al. (2017). Phylloremediation of air pollutants: Exploiting the potential of plant leaves and leaf-associated microbes. Frontiers in Plant Science. 8(1318). doi:10.3389/fpls.2017.01318

    60. Source: ToxTown: Environmental health concerns and toxic chemicals where you live, work and play. Available at: https://toxtown.nlm.nih.gov/chemicals-and-contaminants/nitrogen-oxides. Last accessed: June 30th 2019.

    61. Source: https://www.gov.uk/government/publications/nitrogen-dioxide-effects-on-mortality/associations-of-long-term-average-concentrations-of-nitrogen-dioxide-with-mortality-2018-comeap-summary

    For more information on air pollution, click on the following link: https://www.gov.uk/government/collections/comeap-reports

    62. Source: https://www.express.co.uk/life-style/health/1262810/coronavirus-update-news-hand-wash-triclosan-triclocarban-immune-system

    63. Halden, RU. et al. (2017). The Florence Statement on Triclosan and Triclocarban. Environmental Health Perspectives. 125(6), 064501. doi:10.1289/EHP1788

    64. Weatherly, LM. Gosse, JA. (2017). Triclosan exposure, transformation, and human health effects. Journal of Toxicology & Environmental Health. Part B, Critical reviews. 20(8), pp. 447–469. doi:10.1080/10937404.2017.1399306

    65. Stoker, TE. et al. (2009). Triclosan exposure modulates estrogen-dependent responses in the rat. Presented at Endocrine Society, Washington, DC, June 10-13, 2009.

    66. Zhang, P. et al. (2018). P38/TRHr-dependent regulation of TPO in thyroid cells contributes to the hypothyroidism of triclosan-treated rats. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology. 45(4), pp. 1303–1315.

    67. Homburg, M. et al. (2022). The influence of triclosan on the thyroid hormone system in humans - A systematic review. Frontiers in Endocrinology. 02 June 2022 Sec. Thyroid Endocrinology https://doi.org/10.3389/fendo.2022.883827

    68. Wang, X. et al. (2017). Maternal urinary triclosan concentration in relation to maternal and neonatal thyroid hormone levels: A prospective study. Environmental Health Perspectives. 125(6), 067017.

    69. Source: World Health Organisation (WHO).

    70. Schuhmacher, M. et al. (2019). Concentrations of dioxins and furans in breast milk of women living near a hazardous waste incinerator in Catalonia, Spain. Environment International. 125, pp. 334–341.

    71. Source: Energy Justice Network. Dioxins & Furans: The Most Toxic Chemicals Known to Science. Available at: http://www.ejnet.org/dioxin.

    72. Source: https://www.london.gov.uk/sites/default/files/plastics_unflushables_-_submited_evidence.pdf

    73. Sanchez, O. (2023). Vitamin D and Sunlight webinar. Available at: https://www.youtube.com/watch?v=vh2E-U5q8yw&ab_channel=NutrunityUK

    74. Source: European Commission. (2014). Sunscreens with titanium dioxide as nanoparticles. Health risks? Available at: https://ec.europa.eu/health/scientific_committees/docs/citizens_titaniumnano_en.pdf

    75. Source: https://www.ewg.org

    76. Hong, F. Wang, L. (2018). Nanosized titanium dioxide-induced premature ovarian failure is associated with abnormalities in serum parameters in female mice. International Journal of Nanomedicine. 13, pp. 2543-2549. doi:10.2147/IJN.S151215

    77. Furuya, S. et al. (2018). Global asbestos disaster. International Journal of Environmental Research and Public Health. 16;15(5), 1000. doi:10.3390/ijerph15051000

    78. Takala, J. (2015). Eliminating occupational cancer. Industrial Health. 53(4), 307-309. doi:10.2486/indhealth.53-307

    79. Birnbaum, LS. Schroeder, JC. Tilson, HA. (2010). A repeat call for the banning of asbestos. Environmental health perspectives. 118(7), A280–A281. doi:10.1289/ehp.1002419

    80. WHO elimination of asbestos-related diseases. Geneva: World Health Organisation. (2006). WHO/SDE/OEH/06.03. Available at: http://whqlibdoc.who.int/hq/2006/WHO_SDE_OEH_06.03_eng.pdf. Last accessed: Nov. 26th, 2019.

    81. Heller, DS. et al. (1996). Asbestos exposure and ovarian fibre burden. American Journal of Industrial Medicine. 29(5), pp. 435–439.

    82. Council on Environmental Health. (2011). Chemical-management policy: Prioritizing children's health. Pediatrics. 127(5), pp. 983-990. doi:10.1542/peds.2011-0523.

    83. Council on Environmental Health. (2017). AAP publications reaffirmed or retired. Pediatrics. 139(3), e20164205. doi:10.1542/peds.2016-4205.

    84. Ishida, M. et al. (2014). Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breeding Science. 64(1), 48–59. doi:10.1270/jsbbs.64.48

    85. Wu, X. Zhou, QH. Xu, K. (2009). Are isothiocyanates potential anti-cancer drugs? Acta Pharmacologica Sinica. 30(5),501-12. doi:10.1038/aps.2009.50

    86. Fahey, JW. et al. (2013). Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates. Biochemical & Biophysical Research Communications. 435(1), pp. 1–7.

    87. Chiroma, TM. Ebewele, RO. Hymore, FK. (2014). Comparative assessment of heavy metal levels in soil, vegetables and urban grey waste water used for irrigation in Yola and Kano. International Refereed Journal of Engineering and Science. 3, pp. 1–9.

    88. Amadi, BA. et al. (2018). Biochemical impact of sludge obtained from wastewater treatment plant on soil properties within Port Harcourt environment. Journal of Environmental & Analytical Toxicology. 08:540.

    89. Tavakoli-Hosseinabady, B. et al. (2018). Detoxification of heavy metals from leafy edible vegetables by agricultural waste: Apricot pit shell. Journal of Environmental & Analytical Toxicology. 08:548.

    90. Alimardan, M. Ziarati, P. Moghadam, RJ. (2016). Adsorption of heavy metal ions from contaminated soil by B. integerrima barberry. Biomedical & Pharmacology Journal. 9(1), pp. 169–175.

    91. Tavakoli-Hosseinabady, B. et al. (2018). Detoxification of heavy metals from leafy edible vegetables by agricultural waste: Apricot pit shell. Journal of Environmental & Analytical Toxicology. 8, 548. doi: 10.4172/2161-0525.1000548.

    92. Seneff, S. Orlando, LF. (2018). Glyphosate substitution for glycine during protein synthesis as a causal factor in mesoamerican nephropathy. Journal of Environmental & Analytical Toxicology. 08:541.

    93. Chen, A. et al. (2013). Thyroid hormones in relation to lead, mercury, and cadmium exposure in the National Health & Nutrition Examination Survey, 2007-2008. Environmental Health Perspectives. 121(2), pp. 181–186.

    94. Rogers, M. Aronoff, D. (2016). The influence of non-steroidal anti-inflammatory drugs on the gut microbiome. Clinical Microbiology and Infection. 22(2), pp. 178.e1-178.e9.

    95. Singh, R. et al. (2018). Review on sources and effect of heavy metal in soil: Its bioremediation. IMPACT: International Journal of Research in Applied, Natural & Social Sciences. Special Edition, pp. 1–22.

    96. EFSA Panel on Contaminants in the Food Chain. (2015). Scientific opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA Journal. 13(2), 4002. doi:10.2903/j.efsa.2015.4002. Updated Feb. 2018.

    97. EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk, D. et al. (2020). Update of the risk assessment of nickel in food and drinking water. EFSA journal. European Food Safety Authority. 18(11), e06268. doi:10.2903/j.efsa.2020.6268

    98. EFSA Panel on Contaminants in the Food Chain. (2012). Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA Journal. 10(12), 2985. doi:10.2903/j.efsa.2012.2985.[Updated Apr. 2018]

    99. EFSA. (2012). Mercury in food – EFSA updates advice on risks for public health. Available at: https://www.efsa.europa.eu/en/press/news/121220. Last accessed: Jul., 24th 2019.

    100. Source: Agency for Toxic Substances and Disease Registry. Available at: https://www.atsdr.cdc.gov/sites/toxzine/docs/mercury_toxzine.pdf. Last accessed: Apr. 3rd. 2020.

    101. Taylor, G. (2011). The role of government and media. In: Habakus, LK. Holland, M. Rosenberg, KM. Vaccine Epidemic: How corporate greed, biased science, and coercive government threaten our human rights, our health, and our children. New York : Skyhorse Publishing. ISBN 978-1-62087-212-3.

    102. Cave, S. Mitchell, D. (2001). Mercury in vaccines: Shots of danger? What Your Doctor May Not Tell You About Children's Vaccinations. New York : Warner Books, Inc. ISBN 0-446-67707-8.

    103. Topping, G. Assaf, A. (2005). Strong evidence that daily use of fluoride toothpaste prevents caries. Evidence-Based Dentistry. 6(2), pp. 32–32. doi:10.1038/sj.ebd.6400320 

    104. Xiaofeng, T. et al. (2022). Recent advances in metal–organic framework-based materials for removal of fluoride in water: Performance, mechanism, and potential practical application. Chemical Engineering Journal. 446(Part 3), 137299. doi:10.1016/j.cej.2022.137299

    105. Kanduti, D. Sterbenk, P. Artnik, B. (2016). Fluoride: A review of use and effect on health. Materia Socio-Medica. 28(2), pp. 133–137. doi:10.5455/msm.2016.28.133-137

    106. Peckham, S. Awofeso, N. (2014). Water fluoridation: A critical review of the physiological effects of ingested fluoride as a public health intervention. The Scientific World Journal. 2014, 293019. doi:10.1155/2014/293019

    107. Urbansky, ET. Schock, MR. (2000). Can fluoridation affect water lead(II) levels and lead(II) neurotoxicity? EPA, Office of Research and Development, National Risk Management Research Laboratory, Water Supply and Water Resources Division, Cincinnati, Ohio.

    108. Masters, RD. et al. (2000). Association of silicofluoride treated water with elevated blood lead. Neurotoxicology. 21(6), pp. 1091–1099.

    109. Masters, RD. Coplan, MJ. (1999) Water treatment with silicofluorides and lead toxicity. International Journal of Environmental Studies. 56(4), pp. 435–449. doi:10.1080/00207239908711215.

    110. Goschorska, M. et al. (2018). Potential role of fluoride in the etiopathogenesis of Alzheimer’s disease. International Journal of Molecular Sciences. 19(12), pp. 3965. doi:10.3390/ijms19123965.

    111. Hirzy, J. et al. (2013). Comparison of hydrofluorosilicic acid and pharmaceutical sodium fluoride as fluoridating agents—A cost–benefit analysis. Environmental Science & Policy. 29, pp. 81–86.

    112. Citizens Petition in re: Use of Hydrofluosilicic Acid in Drinking Water Systems of the United States. (2013). Available at: https://www.epa.gov/sites/production/files/documents/tsca_21_petition_ hfsa_2013-04-22.pdf. Last asccessed: 18 Aug. 2019.

    113. World Health Organization. (2016), Nitrate and Nitrite in Drinking-water. WHO Guidelines for Drinking-water Quality (GDWQ). WHO/FWC/WSH/16.52. Available at: https://www.who.int/water_sanitation_health/dwq/chemicals/nitrate-nitrite-background-jan17.pdf. Last accessed: Nov. 27th, 2019.

    114. Temkin, A. et al. (2019). Exposure-based assessment and economic valuation of adverse birth outcomes and cancer risk due to nitrate in United States drinking water. Environmental Research. 176, article 108442.

    115. Ward, MH. et al. (2018). Drinking water nitrate and human health: An updated review. International Journal of Environmental Research & Public Health. 15(7), 1557. doi:10.3390/ijerph15071557

    116. House of Commons Environmental Audit Committee. (2018). UK progress on reducing nitrate pollution. Eleventh report of session 2017–19 (HC 656). Available at: https://publications.parliament.uk/pa/cm201719/cmselect/cmenvaud/656/656.pdf. Last accessed: Nov. 28th, 2019.

    117. Gooddy, DC. et al. (2015). Isotopic fingerprint for phosphorus in drinking water supplies. Environmental Science & Technology. 49(15), pp. 9020–9028.

    118. Weschler, CJ. Shields, HC. (1997). Potential reactions among indoor pollutants. Atmospheric Environment. 31(21), pp. 3487–3495.

    119. Air quality guidelines for Europe. 2nd. ed. WHO regional publications, European series, No. 91.

  • 1. Source: WHO. (2022). Household air pollution and health. Available at: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health

    2. Source: CDC / ATSDR (Agency for Toxic Substances and Disease Registry). (2011). Available at: https://wwwn.cdc.gov/TSP/PHS/PHS.aspx?phsid=445&toxid=78

    3. Source: EU Acrylonitrile. Risk Assessment Summary Report CAS No: 107-13-1. . (2004). Available at: https://echa.europa.eu/documents/10162/b05f71cc-e1b9-4d15-8f82-e7b3a426eec5

    4. Source: US Environmental Protection Agency (EPA). (2012). Available at: https://www.epa.gov/sites/default/files/2016-09/documents/benzene.pdf

    5. Wittkowski, R. Baltes, W. Jennings, WG. (1990). Analysis of liquid smoke and smoked meat volatiles by headspace gas chromatography. Food Chemistry. 37(2), pp. 135–144. doi:10.1016/0308-8146(90)90087-k.

    6. Salviano Dos Santos, VP. et al. (2015). Benzene as a chemical hazard in processed foods. International Journal of Food Sciences and Nutrition. 2015, 545640. doi:10.1155/2015/545640

    7. Sadighara, P. et al. (2022). Benzene food exposure and their prevent methods: A review. Nutrition & Food Science. 52(6), pp.pp. 971-979. doi:10.1108/NFS-10-2021-0306

    8. Varner, SL. Hollifield, HC. Andrzejewski, D. (1991). Determination of benzene in polypropylene food-packaging materials and food-contact paraffin waxes. Journal of the Association of Official Analytical Chemists. 74(2), pp. 367–374.

    9. Marco, E. Grimalt, JO. (2015). A rapid method for the chromatographic analysis of volatile organic compounds in exhaled breath of tobacco cigarette and electronic cigarette smokers. Journal of chromatography. A, 1410, pp. 51–59. doi:10.1016/j.chroma.2015.07.094

    10. Source: The Office of Environmental Health Hazard Assessment (OEHHA). (2013). 1,3-Butadiene Reference Exposure Levels. Available at: https://oehha.ca.gov/media/downloads/crnr/072613bentcrel.pdf

    11. Kaden, DA. et al. (2010). Formaldehyde. In: WHO Guidelines for Indoor Air Quality: Selected Pollutants. Geneva: World Health Organisation. ISBN-13: 978-92-890-0213-4

    12. Source: National Institute for Public Health and the Environment. (2021). Formaldehyde. Available at: https://www.rivm.nl/en/tobacco/harmful-substances-in-tobacco-smoke/formaldehyde

    13. McGregor, D. et al. (2006). Formaldehyde and glutaraldehyde and nasal cytotoxicity: Case study within the context of the 2006 IPCS Human Framework for the Analysis of a cancer mode of action for humans. Critical Reviews in Toxicology. 36(10), pp. 821–835. doi:10.1080/10408440600977669

    14. Naya, M. Nakanishi, J. (2005). Risk assessment of formaldehyde for the general population in Japan. Regulatory Toxicology and Pharmacology : RTP. 43(3), pp. 232–248. doi:10.1016/j.yrtph.2005.08.002

    15. Kaden, DA. et al. (2010). Formaldehyde. WHO Guidelines for Indoor Air Quality: Selected Pollutants. Genova: WHO Regional Office for Europe. ISBN: 9789.

    16. Yu, H. (2002). Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews. 20(2), pp. 149-183. doi:10.1081/GNC-120016203

    17. IARC. (1983). Part I: Chemical, Environmental and Experimental Data. International Agency for Research on Cancer; Lyon. Polynuclear aromatic compounds.

    18. Choi, H. et al. (2010). Polycyclic aromatic hydrocarbons. In: WHO Guidelines for Indoor Air Quality: Selected Pollutants. Geneva: World Health Organization.

    19. Markowitz, G. Rosner, D. (2018). Monsanto, PCBs, and the creation of a “world-wide ecological problem”. Journal of Public Health Policy. 39, pp. 463–540.

    20. Source: The guardian. (2017). Monsanto sold banned chemicals for years despite known health risks, archives reveal. Available at: https://www.theguardian.com/environment/2017/aug/09/monsanto-continued-selling-pcbs-for-years-despite-knowing-health-risks-archives-reveal.

    21. Schad, L. (2016). Polychlorinated biphenyl (PCB) pollution of the Hudson River: Social policy and health considerations. Honors Theses. 208. Available at: https://digitalworks.union.edu/cgi/viewcontent.cgi?article=1207&context=theses

    22. Nadakavukaren, A. Caravanos, J. (2020). Toxic Substances. Our global environment: A health perspective. 8th ed. Long Grove: Waveland Pr Inc. pp.144-146.

    23. Source: Environmental Protection Agency (EPA). (2008). Management plan for polychlorinated biphenyls (PCBs). Available at: https://www.epa.ie/publications/compliance--enforcement/waste/Final-PCB-Management-Plan-board-approved11.pdf

    24. Andersen, HV. et al. (2012). Indoor air concentrations of PCB in a contaminated building estate and factors of importance for the variance. Building and Environment. 204, 108135. doi:10.1016/j.buildenv.2021.108135

    25. Source: Metropolitan Engineering, Consulting & Forensics (MECF). (2022). PCBs PRESENT IN SEALANTS AND PAINTS IN OLDER BUILDINGS

    26. United States Environmental Protection Agency (EPA). (2022). Polychlorinated Biphenyls (PCBs). Available at: https://www.epa.gov/pcbs

    27. Sinkkonen, S. Paasivirta, J. (2000). Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling. Chemosphere. 40, pp. 943–949. doi:10.1016/s0045-6535(99)00337-9

    28. Adenugba, A. et al. (2009). Polychlorinated biphenyls in bile of patients with biliary tract cancer. Chemosphere. 76(6), pp. 841-846. doi:10.1016/j.chemosphere.2009.04.003.

    29. Boucher, O. Muckle, G. Bastien, CH. (2009). Prenatal exposure to polychlorinated biphenyls: a neuropsychologic analysis. Environmental Health Perspectives. 117(1), pp. 7-16. doi:10.1289/ehp.11294

    30. EPA. (2013). Polychlorinated biphenyls (PCBS): Health effects of PCBs [website]. Washington, DC:U.S. Environmental Protection Agency. Available: http://www.epa.gov/osw/hazard/tsd/pcbs/pubs/effects.htm [accessed 12 Feb 2013]. [Ref list]

    31. Boucher, O. et al. (2014). Domain-specific effects of prenatal exposure to PCBs, mercury, and lead on infant cognition: Results from the Environmental Contaminants and Child Development Study in Nunavik. Environmental Health Perspectives. 122(3), pp 310-316. doi:10.1289/ehp.1206323

    32. Illinois Department of Public Health. (2009). Polychlorinated Biphenyls (PCBs). Available at: http://www.idph.state.il.us/envhealth/factsheets/polychlorinatedbiphenyls.htm

    33. Grossman E. (2013). Nonlegacy PCBs: Pigment manufacturing by-products get a second look. Environmental Health Perspectives. 121(3), A86-93. doi:10.1289/ehp.121-a86.

    34. Rodenburg, LA. et al. (2010). Evidence for unique and ubiquitous environmental sources of 3,3'-dichlorobiphenyl (PCB 11). Environmental Science & Technology. 44(8), pp. 2816–2821. doi:10.1021/es901155h

    35. Source: National Tribal Toxics Council. Available at: https://tribaltoxics.org/?page_id=300655#:~:text=PCBs%20are%20allowable%20under%20current,%2C%20switches%2C%20and%20circuit%20breakers.

    36. Rodenburg L. (2012). Inadvertent PCB production and its impact on water quality [panel discussion presentation]. ECOS Annual Meeting, Colorado Springs, CO. Available: http://srrttf.org/wp-content/uploads/2012/08/Lisa-Rodenburg-Slideshow.pdf

    37. Ritter, R. et al. (2011). Intrinsic human elimination half-lives of polychlorinated biphenyls derived from the temporal evolution of cross-sectional biomonitoring data from the United Kingdom. Environmental Health Perspectives. 119(2), pp. 225-231. doi:10.1289/ehp.1002211

    38. Source: Agency for Toxic Substances and Disease Registry. (2016). Polychlorinated Biphenyls (PCBs) Toxicity. Available at: https://www.atsdr.cdc.gov/csem/polychlorinated-biphenyls/biologic_fate.html

    39. Sokolova, V. et al. (2020). Transport of ultrasmall gold nanoparticles (2 nm) across the blood–brain barrier in a six-cell brain spheroid model. Scientific Reports. 10, 18033. doi:10.1038/s41598-020-75125-2

    40. Szakal, C. et al. (2014). Measurement of nanomaterials in foods: Integrative consideration of challenges and future prospects. ACS Nano. 8(4), pp. 3128-3135. doi:10.1021/nn501108g

    41. Contado C. (2015). Nanomaterials in consumer products: a challenging analytical problem. Front Chem. 3, 48. doi:10.3389/fchem

    42. Szakal, C. et al. (2014). Measurement methods for the oral uptake of engineered nanomaterials from human dietary sources: Summary and outlook. Comprehensive Reviews in Food Science and Food Safety. 13(4), pp. 669–678. doi:10.1111/1541-4337.12080

    43. McClements, DJ. et al. (2016). The role of the food matrix and gastrointestinal tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps. NanoImpact. 3-4, pp. 47-57. doi:10.1016/j.impact.2016.10.002

    44. Wang, X. Reece, SP. Brown, JM. (2013). Immunotoxicological impact of engineered nanomaterial exposure: Mechanisms of immune cell modulation. Toxicology Mechanisms and Methods. 23(3), pp. 168-177. doi:10.3109/15376516.2012.757686

    45. Roy, R. et al. (2014). Interactive threats of nanoparticles to the biological system. Immunology Letters. 158(1-2), pp. 79-87. doi:10.1016/j.imlet.2013.11.019

    46. Smith, MJ. et al. (2014). From immunotoxicity to nanotherapy: The effects of nanomaterials on the immune system. Toxicological Sciences. 138(2), pp. 249-255. doi:10.1093/toxsci/kfu005

    47. DeLoid, G. et al. (2016). Effects of engineered nanomaterial exposure on macrophage innate immune function. NanoImpact. 2, pp. 70-81. doi:10.1016/j.impact.2016.07.001

    48. Pinget, G. et al. (2019). Impact of the food additive titanium dioxide (E171) on gut microbiota-host interaction. Frontiers in Nutrition. 6, 57. doi:10.3389/fnut.2019.00057

    49. Rinninella, E. et al. (2021). Impact of food additive titanium dioxide on gut microbiota composition, microbiota-associated functions, and gut barrier: A Systematic Review of In Vivo Animal Studies. International Journal of Environmental Research and Public Health. 18(4), 2008. doi:10.3390/ijerph18042008

    50. Barreau, F. et al. (2021). Titanium dioxide particles from the diet: Involvement in the genesis of inflammatory bowel diseases and colorectal cancer. Particle and Fibre Toxicology. 18, 26. doi:10.1186/s12989-021-00421-2

    51. Xiaoqiong, C. et al. (2020). Foodborne titanium dioxide nanoparticles induce stronger adverse effects in obese mice than non-obese mice: Gut microbiota dysbiosis, colonic inflammation, and proteome alterations. Nano-Micro Small. 16(36), 2001858. doi:10.1002/smll.202001858

    52. Source: Air Pollution Information System (APIS). (2012). Heavy metals. Available at: https://www.apis.ac.uk/overview/pollutants/overview_hm.htm

    53. Tchounwou, PB. et al. (2012). Heavy metal toxicity and the environment. Exp Suppl. 101, pp. 133-164. doi:10.1007/978-3-7643-8340-4_6

    54. Ahmed, ASS. et al. (2019). Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS One. 14(10), e0219336. doi:10.1371/journal.pone.0219336

    55. Jezierska, B. Witeska, M. (2006). The metal uptake and accumulation in fish living in polluted waters. In: Twardowska, I. Allen, HE. Häggblom, MM. Stefaniak, S. (eds). Soil and Water Pollution Monitoring, Protection and Remediation. NATO Science Series. Vol. 69. Springer, Dordrecht. pp. 107–114.

    56. Almeida, J. et al. (2001). Environmental cadmium exposure and metabolic responses of the Nile tilapia, Oreochromis niloticus. Environmental Pollution. 114(2), pp. 169–175. doi:10.1016/s0269-7491(00)00221-9

    57. Chakraborty, P. et al. (2010). Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: An investigation with pigment analysis by HPLC. Chemosphere. 80(5), pp. 548–553. doi:10.1016/j.chemosphere.2010.04.039

    58. Twining, BS. Baines, SB. (2013). The trace metal composition of marine phytoplankton. Annual Review of Marine Science. 5, pp. 191–215. doi:10.1146/annurev-marine-121211-172322

    59. Khalid, N. et al. (2021). Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environmental Pollution. 290, 118104. doi:10.1016/j.envpol.2021.118104

    60. Liu, S. et al. (2022). Microplastics as a vehicle of heavy metals in aquatic environments: A review of adsorption factors, mechanisms, and biological effects. Journal of Environmental Management. 302(Pt A), 113995. doi:10.1016/j.jenvman.2021.113995

    61. Cao, Y. et al. (2021). A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans. The Science of the Total Environment. 788, 147620. doi:10.1016/j.scitotenv.2021.147620

    62. Famuyiwa, AO. Entwistle, JA. (2021). Characterising and communicating the potential hazard posed by potentially toxic elements in indoor dusts from schools across Lagos, Nigeria. Environmental Science. Processes & Impacts. 23(6), pp. 867–879. doi:10.1039/d0em00445f

    63. European Environment Agency (EEA). (2012). Heavy metal emissions in Europe. Available at: https://www.eea.europa.eu/ims/heavy-metal-emissions-in-europe

    64. Source: Scientific American. 2007. World's Top 10 Most Polluted Places. Russia, China and India contain the most areas where toxic pollution and human habitation collide with devastating effects. Available at: https://www.scientificamerican.com/article/worlds-top-10-most-polluted-places

    65. Source: Reuters. (2007). Russia, China, India top worst-polluted list. Available at: https://www.reuters.com/article/environment-pollution-dc-idUSN1225233220070912

    66. Bates, MN. et al. (2004). Health effects of dental amalgam exposure: A retrospective cohort study. International Journal of Epidemiology. 33(4), pp. 894–902, doi:10.1093/ije/dyh164

    67. Johnson, FO. et al. (2011). Exposure to an environmental neurotoxicant hastens the onset of amyotrophic lateral sclerosis-like phenotype in human Cu2+/Zn2+ superoxide dismutase 1 G93A mice: glutamate-mediated excitotoxicity. Journal of Pharmacology and Experimental Therapeutics. 338(2), pp. 518-527. doi:10.1124/jpet.110.174466.

    68. Carocci, A. et al. (2014). Mercury toxicity and neurodegenerative effects. Reviews of Environmental Contamination and Toxicology. 229, pp. 1–18. doi:10.1007/978-3-319-03777-6_1

    69. Vamnes, JS. et al. (2004). Four years of clinical experience with an adverse reaction unit for dental biomaterials. Community Dentistry and Oral Epidemiology. 32, pp. 150–157.

    70. Mutter, J. (2011). Is dental amalgam safe for humans? The opinion of the scientific committee of the European Commission. Journal of Occupational Medicine and Toxicology. 6, 2. doi:10.1186/1745-6673-6-2

    71. Heintze, U. et al. (1983). Methylation of mercury from dental amalgam and mercuric chloride by oral streptococci in vitro. Scandinavian Journal of Dental Research. 91, pp. 150–152.

    72. Yannai, S. Berdicevsky, I. Duek, L. (1991). Transformations of inorganic mercury by Candida albicans and Saccharomyces cerevisiae. Applied and Environmental Microbiology. 57, pp. 245–247.

    73. Leistevuo, J. et al. (2001). Dental amalgam fillings and the amount of organic mercury in human saliva. Caries Research. 35, pp. 163–166. doi:10.1159/000047450

    74. Guzzi, G. et. (2006). Dental amalgam and mercury levels in autopsy tissues: Food for thought. American Journal of Forensic Medicine and Pathology. 27, pp. 42–45. 10.1097/01.paf.0000201177.62921.c8

    75. Björkman, L. et al. (2007). Mercury in human brain, blood, muscle and toenails in relation to exposure: An autopsy study. Environmental Health. 6, article 30. doi:10.1186/1476-069X-6-30

    76. Ehmann, WD. et al. (1986). Brain trace elements in Alzheimer's disease. Neurotoxicology. 7, pp. 197–206.

    77. Thompson, CM. et al. (1988). Regional brain trace-element studies in Alzheimer's disease. Neurotoxicology. 9(1), pp. 1–7.

    78. Saxe, SR. et al. (1999). Alzheimer's disease, dental amalgam and mercury. Journal of the American Dental Association. 130(2), pp. 191–199. doi:10.14219/jada.archive.1999.0168

    79. Wyatt, LH. et al. (2017). Effects of methyl and inorganic mercury exposure on genome homeostasis and mitochondrial function in Caenorhabditis elegans. DNA Repair. 52, pp. 31-48. doi:10.1016/j.dnarep.2017.02.005

    80. Houston MC. (2007). The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Alternative Therapies in Health and Medicine. 13(2), S128–S133.

    81. Houston MC. (2011). Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. Journal of Clinical Hypertension. 13(8), pp. 621–627. doi:10.1111/j.1751-7176.2011.00489.x

    82. Kowalski, R. Wiercinski, J. (2009). Mercury content in smoke and tobacco from selected cigarette brands. Ecological Chemistry and Engineering S (Chemia i Inżynieria Ekologiczna. S). 16(2), pp. 155-162.

    83. WHO Regional Office for Europe. (2000). Environmental Tobacco Smoke. Air Quality Guidelines. (2nd Ed.). Copenhagen. Available at: https://www.euro.who.int/__data/assets/pdf_file/0003/123087/AQG2ndEd_8_1ETS.PDF

    84. National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. (2014). The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. Centers for Disease Control and Prevention (US). Atlanta (GA).

    85. Vimy, MJ. et al. (1997). Mercury from maternal “silver” tooth fillings in sheep and human breast milk. A source of neonatal exposure. Biological Trace Element Research. 56, pp. 143–52.

    86. Leikauff GD. (2002). Hazardous air pollutants and asthma. Environmental Health Perspectives. 110(Suppl. 4), pp. 505–526.

    87. WHO. (2012). WHO Technical report series: 967. Study group on tobacco product regulation: Report on the scientific basis of tobacco product regulation. Fourth report of a WHO study group. Available at: file:///Users/olivier/Downloads/9789241209670_eng.pdf

    88. Shah, T. Sullivan, K. Carter J. (2006). Sudden infant death syndrome and reported maternal smoking during pregnancy. American Journal of Public Health. 96(10):, pp. 757-9. doi: 10.2105/AJPH.2005.073213

    89. Source: United States Environmental Protection Agency (EPA). (2022). Learn about ocean dumping. Available at: https://www.epa.gov/ocean-dumping/learn-about-ocean-dumping

    90. Source: International Maritime Organization (IMO). (2019). Convention on the prevention of marine pollution by dumping of wastes and other matter. Available at: https://www.imo.org/en/OurWork/Environment/Pages/London-Convention-Protocol.aspx

    91. Çamur, D. et al. (2016). Determining mercury levels in anchovy and in individuals with different fish consumption habits, together with their neurological effects. Toxicology and Industrial Health. 32(7), pp. 1215–1223. doi:10.1177/0748233714555393

    92. Source: US Food and Drug Administration (FDA). (2022). Mercury levels in commercial fish and shellfish (1990-2012). Available at: https://www.fda.gov/food/metals-and-your-food/mercury-levels-commercial-fish-and-shellfish-1990-2012

    93. Source: United States Environmental Protection Agency (EPA). (2022). Sulfur hexafluoride (SF6) basics. Available at: https://www.epa.gov/eps-partnership/sulfur-hexafluoride-sf6-basics#:~:text=Since%20the%201950's%2C%20the%20U.S.,stations%20and%20customer%20load%20centers.

    94. European Environment Agency (EEA). (2019). Annual European Union greenhouse gas inventory 1990–2017 and inventory report 2019. Submission under the United Nations Framework. Convention on Climate Change and the Kyoto Protocol. Available at: https://www.eea.europa.eu/publications/european-union-greenhouse-gas-inventory-2019/european-union-greenhouse-gas-inventory-2019/viewfile

    95. Nakano, T. et al. (2016). Three-year retention of radioactive caesium in the body of TEPCO workers involved in the Fukushima Daiichi nuclear power station accident. Radiation Protection Dosimetry. 170(1-4), pp. 315–317. doi:10.1093/rpd/ncw036

    96. Lipsztein, JL. et al. (1991). Studies of Cs retention in the human body related to body parameters and Prussian blue administration. Health Physics. 60(1), pp. 57–61. doi:10.1097/00004032-199101000-00008

    97. Stather, JW. (1970). An analysis of the whole-body retention of caesium-137 in rats of various ages. Health Physics. 18(1), pp. 43–52. doi:10.1097/00004032-197001000-00004

    98. World Nuclear Association. (2022). Fukushima Daiichi Accident. Available at: https://world-nuclear.org/information-library/safety-and-security/safety-of-plants/fukushima-daiichi-accident.aspx

    99. Source: The Japan Times. (2018). Seven years on, radioactive water at Fukushima plant still flowing into ocean, study finds. Available at: https://www.japantimes.co.jp/news/2018/03/29/national/seven-years-radioactive-water-fukushima-plant-still-flowing-ocean-study-finds/

    100. Hon, Z, Österreicher, J. Navrátil, L. (2015). Depleted uranium and its effects on humans. Sustainability. 7, pp. 4063-4077. doi:10.3390/su7044063

    101. Ratnikov, AN. et al. (2020). The Behaviour of Uranium in Soils and the Mechanisms of Its Accumulation by Agri. In: Dharmendra, KG. Clemens, W. (Ed). Uranium in Plants and the Environment. Switzerland: Springer Cham. pp 113–135. ISBN: 978-3-030-14960-4.

    102. Source: CDC. Toxicological Profile for Uranium. Potential for human exposure. pp. 287-338. Available at: https://www.atsdr.cdc.gov/ToxProfiles/tp150-c6.pdf

    103. Nursapina, NA. et al. (2022). Effect of mineral fertilisers application on the transfer of natural radionuclides from soil to radish (Raphanus sativus L.). Journal of Environmental Radioactivity. 247, 106863. doi:10.1016/j.jenvrad.2022.106863

    104. Huang, JW. et al. ( 1998). Phytoremediation of uranium-contaminated soils:  Role of organic acids in triggering uranium hyperaccumulation in plants. Environmental Science & Technology. 32, 13. doi:10.1021/es971027u

    105. WHO, I.A.P. (1983). Exposure and Health Effects. Euro Reports and Studies, 78.

    106. Keith, S. et al. (2013). Toxicological Profile for Uranium. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US). Health Effects. pp. 39-262.

    107. Minghao, Ma. et al. (2020). Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades. Environment International. 145, 106107. doi:10.1016/j.envint.2020.106107.

    108. Monleau, M. et al. (2005). Bioaccumulation and behavioural effects of depleted uranium in rats exposed to repeated inhalations. Neuroscience Letters. 390(1), pp. 31–36. doi:10.1016/j.neulet.2005.07.051

    109. United States Environmental Protection Agency (EPA). (1999). Integrated Risk Information System (IRIS) on Uranium, Natural. National Center for Environmental Assessment, Office of Research and Development, Washington, DC.

  • 1. Sanchez, O. (2020). The Truth about grains. Energise - 30 Days to Vitality: Reset Your Body to its Natural Rhythm. Manage Blood Sugar and Energy Levels. Stamp Down Inflammation. Gain Clarity. Develop resilience. and become the person you have always dreamed to be. London: Nutrunity Publishing. pp. 123-151.

    2. Robinson, MW. Harmon, C. O'Farrelly, C. (2016). Liver immunology and its role in inflammation and homeostasis. Cellular & Molecular Immunology. 13(3), pp. 267–276. doi:10.1038/cmi.2016.3

    3. Rita Garcia-Martinez, R. Cordoba, J. (2012). Liver-induced inflammation hurts the brain. Journal of Hepatology. 56, pp. 515–517. doi: 10.1016/j.jhep.2011.09.014

    4. Kerner, A. et al. (2005). Association between elevated liver enzymes and C-reactive protein: Possible hepatic contribution to systemic inflammation in the metabolic syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology. 25, pp. 193–197.

    5. Boutagy, N. et al. (2016). Metabolic endotoxemia with obesity: Is it real and is it relevant? Biochimie. 124, pp. 11–20. doi:10.1016/j.biochi.2015.06.020

    6. Arroyo, V. (2017). Microalbuminuria, systemic inflammation, and multiorgan dysfunction in decompensated cirrhosis: Evidence for a nonfunctional mechanism of hepatorenal syndrome. Hepatology International. 11(3), pp. 242–244.

    7. d'Hennezel, E. et al. (2017). Total Lipopolysaccharide from the Human Gut Microbiome Silences Toll-Like Receptor Signaling. Microbial Systems. 2(6), e00046-17. doi:10.1128/mSystems.00046-17

    8. Cani, PD. et al. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 56, pp. 1761–1772. doi:10.2337/db06-1491

    9. Mehta, NN. et al. (2010). Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes. 59, pp. 172–181. doi:10.2337/db09-0367

    10. Cani, PD. et al. (2009). Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 58, pp. 1091–1103. doi:10.1136/gut.2008.165886

    11. Vatanen, T. et al. (2016). Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 165, pp. 842–853. doi:10.1016/j.cell.2016.04.007

    12. Mani, V. Hollis, J. Gabler, N. (2013). Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia. Nutrition & Metabolism. 10(6). doi: 10.1186/1743-7075-10-6

    13. Ahola, AJ. et al. (2017). Dietary patterns reflecting healthy food choices are associated with lower serum LPS activity. Scientific Reports. 7(1), 6511. doi:10.1038/s41598-017-06885-7

    14. Moffett, JR. et al. (2020). Acetate revisited: A key biomolecule at the nexus of metabolism, epigenetics, and oncogenesis - Part 2: Acetate and ACSS2 in health and disease. Frontiers in Physiology. 11, 580171. doi:10.3389/fphys.2020.580171

    15. Siddiqui, MT. Cresci, GAM. (2021). The immunomodulatory functions of butyrate. Journal of Inflammation Research. 14, pp. 6025-6041. doi:10.2147/JIR.S300989

    16. Cavaliere, G. et al. (2022). Butyrate improves neuroinflammation and mitochondrial impairment in cerebral cortex and synaptic fraction in an animal model of diet-induced obesity. Antioxidants (Basel). 12(1), 4. doi:10.3390/antiox12010004

    17. Hosseini, E. et al. (2011). Propionate as a health-promoting microbial metabolite in the human gut. Nutrition Reviews. 69(5), pp. 245-58. doi:10.1111/j.1753-4887.2011.00388.x

    18. Yan, J. et al. (2022). Beneficial effect of the short-chain fatty acid propionate on vascular calcification through intestinal microbiota remodelling. Microbiome. 10, 195. doi.10.1186/s40168-022-01390-0

    19. Wang, SP. et al. (2020). Pivotal roles for pH, lactate, and lactate-utilizing bacteria in the stability of a human colonic microbial ecosystem. mSystems. 5(5): e00645-20. doi:10.1128/mSystems.00645-20

    20. Pessione E. (2012). Lactic acid bacteria contribution to gut microbiota complexity: Lights and shadows. Frontiers in Cellular and Infection Microbiology. 2, 86. doi:10.3389/fcimb.2012.00086

    21. Sales, KM. Reimer, RA. (2023). Unlocking a novel determinant of athletic performance: The role of the gut microbiota, short-chain fatty acids, and “biotics” in exercise. Journal of Sport and Health Science. 12(1), pp. 36-44. doi:10.1016/j.jshs.2022.09.002

    22. Sharifnia, T. et al. (2015). Hepatic TLR4 signalling in obese NAFLD. The American Journal of Physiology-Gastrointestinal and Liver Physiology. 309(4), G270–G278.

    23. Colombo, G. et al. (2009). Liver cholesterol: From old achievements to new insights. Current Drug Target., 10(10), pp. 957–969.

    24. Crispe, IN. (2009). The liver as a lymphoid organ. Annual Review of Immunology. 27, pp. 147–163.

    25. Seitz, HK. Stickel, F. (2007). Molecular mechanisms of alcohol-mediated carcinogenesis. Nature Reviews Cancer. 7(8), pp. 599–612.

    26. Björnsson, ES. (2016). Hepatotoxicity by drugs: The most common implicated agents. International Journal of Molecular Sciences. 17(2), 224.

    27. Navarro, VJ. Senior, JR. (2006). Drug-delated hepatotoxicity. New England Journal of Medicine. 354(7), pp. 731–739. doi:10.1056/NEJMra052270

    28. Pittler, MH. Ernst, E. (2003). Systematic review: hepatotoxic events associated with herbal medicinal products. Alimentary Pharmacology & Therapeutics. 18(5), pp. 451-471. doi:10.1046/j.1365-2036.2003.01689.x

    29. Source: National Institute of Health (NIH). (2023). Available at: https://www.ncbi.nlm.nih.gov/books/NBK548441/#:~:text=(Systematic%20review%20of%20published%20cases,%5D%2C%20valerian%20%5B1%5D).

    30. Bunchorntavakul, C. Reddy, KR. (2013). . Review article: Herbal and dietary supplement hepatotoxicity. Alimentary Pharmacology & Therapeutics. 37(1), pp. 3-17.

    31. Bailey, DG. Dresser, G. Arnold, JM. (2013). Grapefruit-medication interactions: Forbidden fruit or avoidable consequences? CMAJ. 185(4), pp. 309-16. doi:10.1503/cmaj.120951

    32. Kensler, T.W. Roebuck, BD. Wogan, GN. (2011). Aflatoxin: A 50-year odyssey of mechanistic and translational toxicology. Toxicological Sciences. 120(Suppl. 1), S28–S48.

    33. Tchounwou, PB. et al. (2012). Heavy metal toxicity and the environment. Experientia supplementum. 101, pp. 133-164. doi:10.1007/978-3-7643-8340-4_6

    34. Abdelmalek, MF. et al. (2010). Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology. 51(6), pp. 1961–1971.

    35. Park, YK. Yetley, EA. (1993). Intakes and food sources of fructose in the United States. American Journal of Clinical Nutrition. 58(Suppl. 5), pp. 737S-747S. doi:10.1093/ajcn/58.5.737S

    36. Ma, X. et al. (2022). Excessive intake of sugar: An accomplice of inflammation. Frontiers in Immunology. 13, 988481. doi:10.3389/fimmu.2022.988481

    37. Bhat, SF. et al. (2021). Exposure to high fructose corn syrup during adolescence in the mouse alters hepatic metabolism and the microbiome in a sex-specific manner. Journal of Physiology. 599(5), pp. 1487-1511. doi:10.1113/JP280034

    38. Aslibekyan, S. et al. (2012). Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in U.S. adults: a cohort study. Annals of Internal Medicine. 157(12), pp. 857–865

    39. Schnabel, L. et al. (2018). Association between ultra-processed food consumption and risk of mortality among middle-aged adults in France. JAMA Internal Medicine. 178(8), pp. 1080–1089.

    40. Yang, X. et al. (2016). Effects of Environmental Contaminants on Liver Injury. Biomedical Research International. 2016, pp. 1–11.

  • 1. Koppel, N. Maini Rekdal, V. Balskus, E. (2017). Chemical transformation of xenobiotics by the human gut microbiota. Science. 356(6344), eaag2770. doi:10.1126/science.aag2770

    2. Mishra, V. Singh, G. Shukla, R. (2019). Impact of xenobiotics under a changing climate scenario. In: Choudhary, KK. et al. Climate Change and Agricultural Ecosystems Current Challenges and Adaptation. Duxford: Woodhead Publishing. pp. 133–151.

    3. Begriche, K. Massart, J. Fromenty, B. (2019). Mitochondrial dysfunction induced by xenobiotics: Involvement in steatosis and steatohepatitis. In: Morio, B. Pénicaud, L. Rigoulet, M. Mitochondria in Obesity and Type 2 Diabetes Comprehensive Review on Mitochondrial Functioning and Involvement in Metabolic Diseases. London: Academic Press. pp. 347–358.

    4. Pollard, KM. et al. (2018). Environmental xenobiotic exposure and autoimmunity. Current Opinion in Toxicology. 10, pp. 15–22. doi:10.1016/j.cotox.2017.11.009

    5. Farag, MR. Alagawany, M. (2018). Erythrocytes as a biological model for screening of xenobiotics toxicity. Chemico-Biological Interactions. 279, pp. 73–83. doi:10.1016/j.cbi.2017.11.007

    6. Ramaiah, L. Bounous, DI. Elmore, SA. (2013). Hematopoietic System. In: Haschek, WM. Rousseaux, CG. Wallig, MA. Haschek and Rousseaux's Handbook of Toxicologic Pathology. 3rd ed. London: Academic Press. pp. 1863–1933.

    7. Huerta, B. et al. (2016). Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river. Science of The Total Environment. 540, pp. 241-249.

    8. Diamanti-Kandarakis, E. et al. (2009). Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocrine Reviews. 30(4), pp. 293–342. doi:10.1210/er.2009-0002

    9. Cortés Muñoz, JE. et al. (2013). Endocrine disruptors in water sources: Human health risks and EDs removal from water through nanofiltration. In: Quinn, NWT. International Perspectives on Water Quality Management and Pollutant Control. Rijeka: InTech. https://doi.org/10.5772/54482

    10. Falconer, IR. (2006). Are endocrine disrupting compounds a health risk in drinking water? International Journal of Environmental Research and Public Health. 3(2), pp. 180–184.

    11. Stackelberg, PE. et al. (2004). Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. The Science of the Total Environment. 329 (1-3), pp. 99–113.

    12. Manvendra, P. et al. (2019). Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chemical Reviews. 119(6), pp. 3510–3673. doi:10.1021/acs.chemrev.8b00299

    13. Must read: https://www.nutrunity.com/updates/dark-waters?rq=dark%20water%20

    14. Source: McKie, R. (2012). £30bn bill to purify water system after toxic impact of contraceptive pill. The Guardian. Available at: https://www.theguardian.com/environment/2012/jun/02/water-system-toxic-contraceptive-pill

    15. Drinking Water Inspectorate (DWI) report on Thames Water 2018. Source: http://www.dwi.gov.uk/about/annual-report/2018/company-data/tms.pdf

    16. Source: Drinking Water Inspectorate. 2019.

    17. Annamalai, J. Namasivayam, V. (2015). Endocrine disrupting chemicals in the atmosphere: Their effects on humans and wildlife. Environment International. 76, pp. 78–97.

    18. Alloway, BJ. (2013). Sources of heavy metals and metalloids in soils. In: Alloway, BJ., editor. Heavy Metals in Soils. Trace Metals and Metalloids in Soils and their Bioavailability. Springer; Dordrecht, The Netherlands. pp. 11–50.

    19. Alengebawy A. et al. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics. 9(3), 42. doi:10.3390/toxics9030042

    14. Duffy, C. Perez, K. Partridge, A. (2007). Implications of phytoestrogen intake for breast cancer. CA: A cancer Journal for Clinicians. 57(5), pp. 260–277.

    15. Miadoková, E. (2009). Isoflavonoids - An overview of their biological activities and potential health benefits. Interdisciplinary Toxicology. 2(4), pp. 211–218. doi:10.2478/v10102-009-0021-3

    16. Acceptable Purpose: DDT. (2018). Stockholm Convention on Persistent Organic Pollutants. Available at: http://chm.pops.int/Implementation/Exemptions/AcceptablePurposes/AcceptablePurposesDDT/tabid/456/Default.aspx

    17. Doumouchtsis, KK. et al. (2009). The effect of lead intoxication on endocrine functions. Journal of Endocrinological Investigation. 32(2), pp. 175–183. doi:10.1007/bf03345710

    18. Telišman, S. et al. (2007). Reproductive toxicity of low-level lead exposure in men. Environmental Research. 105(2), pp. 256–266.

    19. Kresovich, JK. Argos, M. Turyk, ME. (2015). Associations of lead and cadmium with sex hormones in adult males. Environmental Research. 142, pp. 25–33. doi:10.1016/j.envres.2015.05.026

    20. Eze, UA. et al. (2018). Mycotoxins as potential cause of human infertility - A review of evidence from animal and cellular models. Acta Horticulturae. 1225, pp. 513-525

    21. Bandera, EV. et al. (2011). Urinary mycoestrogens, body size and breast development in New Jersey girls. The Science of the Total Environment. 409(24), pp. 5221–5227. doi:10.1016/j.scitotenv.2011.09.029

    22. Awuchi, CG. et al. (2022). Mycotoxins' toxicological mechanisms involving humans, livestock and their associated health concerns: A review. Toxins (Basel). 14(3), 167. doi:10.3390/toxins14030167

    23. Grandi, G. et al. (2012). Prevalence of menstrual pain in young women: what is dysmenorrhea? Journal of Pain Research. 5, pp. 169-174. doi:10.2147/JPR.S30602

    24. Source: NHS UK (2023).

  • 1. Pollard, KM. Hultman, P. Kono, DH. (2010). Toxicology of autoimmune diseases. Chemical Research in Toxicology. 23(3), pp. 455–466. doi:10.1021/tx9003787

    2. Bigazzi, P. (1997). Autoimmunity caused by xenobiotics. Toxicology. 119(1), pp. 1–21. 

    3. Ershadinia, N. et al. (2020). The prevalence of autoimmune diseases in patients with multiple sclerosis: A cross-sectional study in Qom, Iran, in 2018. Current Journal of Neurology. 19(3), pp. 98–102. doi:10.18502/cjn.v19i3.5421

    4. Source: GlobalData (2016). EpiCast Report: Systemic Lupus Erythematosus (SLE) – Epidemiology Forecast To 2025, December 2016, GDHCER144-16

    5. Source: GlobalData (2015). EpiCast Report: Sjögren’s Syndrome – Epidemiology Forecast to 2024, December 2015, GDHCER104-15

    6. Lerner, A. Jeremias, P. Matthias, T. (2015). The World Incidence and Prevalence of Autoimmune Diseases is Increasing. International Journal of Celiac Disease. 3(4), pp. 151-155. doi:10.12691/ijcd-3-4-8

    7. Source: statista.com (2019)

    8. Olsen, NJ. (2004). Drug-induced autoimmunity. Best Practice & Research: Clinical Rheumatology. 18(5), pp. 677-688. doi:10.1016/j.berh.2004.05.006

    9. Guo, H. et al. (2022). Modeling and insights into the structural characteristics of drug-induced autoimmune diseases. Frontiers in Immunology. 13, 1015409. doi:10.3389/fimmu.2022.1015409

    10. Benfaremo D. et al. (2018). Musculoskeletal and rheumatic diseases induced by immune checkpoint inhibitors: a review of the literature. Current Drug Safety. 13(3), 150-164. doi:10.2174/1574886313666180508122332

    11. Radhakrishnan, J. Perazella, MA. (2015). Drug-induced glomerular disease: attention required. Clinical Journal of the American Society of Nephrology. 10(7), pp. 1287-1290. doi:10.2215/CJN.01010115

    12. Richardson BC. (2019). Drug-induced lupus. In: Hochberg MC, Gravallese EM, Silman AJ, Smolen JS, Weinblatt ME, Weisman MH, eds. Rheumatology. 7th ed. Philadelphia, PA: Elsevier. Chapter 141.

    13. Rubin RL. (2015). Drug-induced lupus. Expert Opinion on Drug Safety. 14(3), pp. 361-378. PMID: 25554102 doi:10.1517/14740338.2015.995089

    14. Rubin RL. (2012). Drug-induced lupus. In: Tsokos GC, ed. Systemic Lupus Erythematosus. 2nd ed. Cambridge, MA: Elsevier Academic Press. Chapter 56.

    15. Vaglio, A. et al. (2018). Drug-induced lupus: traditional and new concepts. Autoimmunity Reviews. 17(9), pp. 912-918. doi:10.1016/j.autrev.2018.03.016

    16. Shoenfeld, Y. et al. (2015). In: Agmon-Levin, N. Tomljenovic, L. Shoenfeld, Y. (Ed). Vaccines and Autoimmunity. Hoboken, New Jersey: Wiley-Blackwell.

    17. Williams WV. (2017). Hormonal contraception and the development of autoimmunity: A review of the literature. The Linacre Quarterly. 84(3), pp. 275-295. doi: 10.1080/00243639.2017.1360065

    18. Vojdani A, Vojdani C. (2015). Immune reactivity to food coloring. Alternative Therapies in Health and Medicine. 21(Suppl. 1), pp. 52-62.

    19. Pereyo N. (1986). Hydrazine derivatives and induction of systemic lupus erythematosus. Journal of the American Academy of Dermatology. 14(3), pp. 514-5. doi: 10.1016/s0190-9622(86)80432-7

    20. Dar HY, et al. (2017). Immunomodulatory effects of food additives. International Journal of Immunotherapy and Cancer Research. doi:10.17352/2455-8591.000015

    21. Tuuminen, T. Rinne, KS. (2017). Severe sequelae to mold-related illness as demonstrated in two Finnish cohorts. Frontiers in immunology. 8, 382. doi:10.3389/fimmu.2017.00382

    22. Maresca, M. Fantini, J. (2010). Some food-associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases. Toxicon. 56(3), pp. 282–294.

    23. Chuang, TY. (2023). Effect of endocrine disrupting chemicals on early disease course in Multiple sclerosis (P5-3.004). Neurology. 100(17 Supplement 2), 2496. doi:10.1212/WNL.0000000000202598

    24. Popescu, M. Feldman, TB. Chitnis, T. (2021) Interplay between endocrine disruptors and immunity: Implications for diseases of autoreactive etiology. Frontiers in Pharmacology. 12, 626107. doi:10.3389/fphar.2021.626107

    25. Bonaldo, B. et al. (2023). Effects of perinatal exposure to bisphenol A or S in EAE model of multiple sclerosis. Cell and Tissue Research. 392, pp. 467–480 (2023). doi:10.1007/s00441-023-03746-w

  • 1. Source: https://bioinitiative.org

    2. Wyde, M. et al. (2018). Report of partial findings from the National Toxicology Program carcinogenesis studies of cell phone radiofrequency radiation in Hsd: Sprague Dawley® SD rats (whole body exposures). BioRxiv. doi:10.1101/055699

    3. Alster, M. (2015). Captured Agency. How the Federal Communications Commission Is Dominated by the Industries It Presumably Regulates. Edmond J. Safra Center for Ethics Harvard University. Cambridge, MA. Available at: http://ethics.harvard.edu/files/center-for-ethics/files/capturedagency_alster.pdf. Last accessed: 25th Jul. 2023.

    4. Kıvrak, EG. et al. (2017). Effects of electromagnetic fields exposure on the antioxidant defense system. Journal of Microscopy and Ultrastructure. 5(4), pp. 167–176. doi:10.1016/j.jmau.2017.07.003

    5. Belyaev, I. et al. (2016). EUROPAEM EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses. Reviews on Environmental Health. 31(3), pp. 363–397. doi:10.1515/reveh-2016-0011

    6 Hedendahl, L. Carlberg, M. Hardell, L. (2015). Electromagnetic hypersensitivity – an increasing challenge to the medical profession. Reviews on Environmental Health. 30(4), pp. 209–15.

    7. Fico, G. et al. Psychotropic drug repurposing for COVID-19: A Systematic Review and Meta-Analysis. Eur Neuropsychopharmacol. 2023 Jan;66:30-44. doi: 10.1016/j.euroneuro.2022.10.004. Epub 2022 Oct 20. PMID: 36399837; PMCID: PMC9581805.

    8. Kane, RC (2001). Cellular Telephone Russian Roulette. A historical and scientific perspective. New York: Vantage Press, Inc. p. X. ISBN: 0-533-13673-3.

    9. Source: https://www.iarc.fr/wp-content/uploads/2018/07/pr208_E.pdf

    10. Source: IPLOOK. (2023). Available at: https://www.iplook.com/info/5g-satellite-i00012i1.html

    11. Rupprecht, TA. et al. (2008). The pathogenesis of lyme neuroborreliosis: From infection to inflammation. Molecular Medicine (Cambridge, Mass.). 14(3-4), pp. 205–212.

    12. Newschaffer, CJ. et al. (2007). The epidemiology of autism spectrum disorders. Annual Review of Public Health. 28, pp. 235-258. doi:10.1146/annurev.publhealth.28.021406.144007

    13. Harley, JB. et al. (2018). Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nature Genetics. 50(5), pp. 699–707. doi:10.1038/s41588-018-0102-3 

    14. Fujinami, RS. et al. (2006). Molecular mimicry, bystander activation, or viral persistence: Infections and autoimmune disease. Clinical Microbiology Reviews. 19(1), pp. 80–94. doi:10.1128/CMR.19.1.80-94.2006

    15. Young, GR. Stoye, JP. Kassiotis, G. (2013). Are human endogenous retroviruses pathogenic? An approach to testing the hypothesis. Bioessays. 35, pp. 794–803. doi:10.1002/bies.201300049

    16. Hayward A. (2017). Origin of the retroviruses: when, where, and how?. Current Opinion in Virology. 25, pp. 23–27. doi:10.1016/j.coviro.2017.06.006

    17. Bonora M, Pinton, P. (2018). Mitochondrial DNA keeps you young. Cell Death and Disease. 9(10), 992. doi:10.1038/s41419-018-1045-4

    18. Nicolson GL. (2014). Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Integrative Medicine (Encinitas). 13(4), pp. 35-43.

    19. Source: Authority for Nuclear Safety and Radiation Protection (ANVS).(2021). Available at: https://english.autoriteitnvs.nl/latest/news/2021/12/16/do-you-have-a-quantum-pendant-anti-5g-pendant-or-a-negative-ion-jewellery-item-or-sleep-mask-if-so-store-it-away-safely

    20. Hassan, HJ. et al. (2021). The naturally occurring radioactivity of 'scalar energy' pendants and concomitant radiation risk. PLoS One. 16(6), e0250528. doi:10.1371/journal.pone.0250528

    21. Bonczyk, M. Grygier, A. Skubacz,K. (2022). “Quantum Pendants” - the measurement of exposure to enhanced natural radioactivity, Measurement. 196, 111212. doi:10.1016/j.measurement.2022.111212.

  • 1. Hernandez, LM. et al. (2019). Plastic teabags release billions of microparticles and nanoparticles into tea. Environmental Science & Technology. 53(21), pp. 12300–12310. doi:10.1021/acs.est.9b02540.

    2. Lai, H. Liu, X. Qu, M. (2022). Nanoplastics and human health: Hazard identification and biointerface. Nanomaterials (Basel). 12(8), 1298. doi: 10.3390/nano12081298

    3. Claudio, SR. et al. (2019). Role of polyphenols and nonpolyphenols against toxicity induced by fluoride. European Journal of Cancer Prevention. 28(2), pp. 109–114.

    4. Reynolds, A. et al. (2019). Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. The Lancet. 393(10170), pp. 434–445.

    5. Sanchez, O. (2021). Ketogenic Diet and Fasting. Energise - 30 Days to Vitality. Nutrunity Publishing, London. pp. 269-331.

    6. Al-Kazafy, HS. (2015). Synthetic Fertilizers; Role and Hazards. In: Sinha, S. Fertilizer Technology I Synthesis. USA: Studium Press LLC. pp. 176–199.

    7. Wei, X. et al. (2017). Phylloremediation of air pollutants: Exploiting the potential of plant leaves and leaf-associated microbes. Frontiers in Plant Science. 8(1318). doi:10.3389/fpls.2017.01318

    8. Goh, CF. Ming, LC. Wong, LC. (2021). Dermatologic reactions to disinfectant use during the COVID-19 pandemic. Clinics in Dermatology. 39(2), pp. 314-322. doi:10.1016/j.clindermatol.2020.09.005

    9. Pattnaik, S. Subramanyam, VR. Kole, C. (1996). Antibacterial and antifungal activity of ten essential oils in vitro. Microbios. 86(349), pp. 237–246.

    10. Yau, ACY. et al. (2017). Influence of hydrocarbon oil structure on adjuvanticity and autoimmunity. Scientific Reports. 7(14998). doi:10.1038/s41598-017-15096-z

    11. Grob K. (2018). Mineral oil hydrocarbons in food: A review. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment. 35(9), pp. 1845-1860. doi:10.1080/19440049.2018.1488185

    12. Grob K. (2018). Toxicological assessment of mineral hydrocarbons in foods: State of present discussions. Journal of Agriculture and Food Chemistry. 66(27), pp. 6968–6974

    13. Reeves, WH. et al. (2009). Induction of autoimmunity by pristane and other naturally occurring hydrocarbons. Trends in Immunology. 30(9), pp. 455-464. doi:10.1016/j.it.2009.06.003

    14. Hoffmann, MH. et al. (2007). The rheumatoid arthritis-associated autoantigen hnRNP-A2 (RA33) Is a major stimulator of autoimmunity in rats with Pristane-induced arthritis. Journal of Immunology. 179(11), p.7568–7576. doi:10.4049/jimmunol.179.11.7568

    15. Pelley, J. (2017). Dust, Unsettled. ACS Central Science. 3(1), pp. 5-9. doi:10.1021/acscentsci.7b00006

    16. U.S. Agency for Toxic Substances and Disease Registry. (2022). Per- and Polyfluoroalkyl Substances (PFAS) and Your Health. [Online]. ATSDR.CDC.gov. Last Updated: Last Reviewed: November 1, 2022. Available at: https://www.atsdr.cdc.gov/pfas/health-effects/exposure.html?CDC_AA_refVal=https%3A%2F%2Fwww.atsdr.cd Last Accessed: 27th Jul. 2023

    17. Source: Sanchez, O. (2023). UK-US trade deal. What it means for British agriculture. Available at: http://www.exquisiteprivatechef.co.uk/its-all-about-food/uk-us-trade-deal-update

    18. Source: Sanchez, O. (2023). Does my body absorb iron from iron? Available at: https://www.nutrunity.com/updates/does-my-body-absorb-iron-from-iron

  • 1. Ye, J. et al. (2019). An East meets West approach to the understanding of emotion dysregulation in depression: From perspective to scientific evidence. Frontiers in Psychology. 10, 574. doi: 10.3389/fpsyg.2019.00574

    2. Hodges, RE. Minich, DM. (2015). Modulation of metabolic detoxification pathways using foods and food-derived components: A scientific review with clinical application. Journal of Nutrition & Metabolism. 2015, 760689. doi:10.1155/2015/760689

    3. Busserolles, J. et al. (2002). Rats fed a high sucrose diet have altered heart antioxidant enzyme activity and gene expression. Life Sciences. 71(11), pp. 1303–1312.

    4. McNulty, H. et al. (2006). Riboflavin lowers homocysteine in individuals homozygous for the MTHFR 677C->T polymorphism. Circulation. 113(1), pp. 74–80.

    5. Kesarwani, K. Gupta, R. Mukerjee, A. (2013). Bioavailability enhancers of herbal origin: An overview. Asian Pacific Journal of Tropical Biomedicine. 3(4), pp. 253–266.

    6. Prasad, S. Tyagi, AK. Aggarwal, BB. (2014). Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Research & Treatment: Official Journal of Korean Cancer Association. 46(1), pp. 2–18. doi:10.4143/crt.2014.46.1.2

    7. Sanchez, O. (2023). Curcumin: Is it all a lie? Available at: https://www.nutrunity.com/updates/curcumin-lies?rq=glucuronidation

    8. Suresh, D. Srinivasan, K. (2010). Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. The Indian Journal of Medical Research. 131, pp. 682–691.

    9. Farzaei, MH. et al. (2018). Curcumin in liver diseases: A systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients. 10(7), E855. doi:10.3390/nu10070855

    10. Heath, DD. et al. (2005). Tetrahydrocurcumin in plasma and urine: Quantitation by high performance liquid chromatography. Journal of Chromatography B. 824(1-2), pp. 206–212.

    11. Zhang, Z. et al. (2018). Curcumin’s metabolites, tetrahydrocurcumin and octahydrocurcumin, possess superior anti-inflammatory effects in vivo through suppression of TAK1-NF-κB pathway. Frontiers in Pharmacology. 9, article 1181. doi:10.3389/fphar.2018.01181

    12. Shi, H. et al. (2018). Arctigenin ameliorates inflammation by regulating accumulation and functional activity of MDSCs in endotoxin shock. Inflammation. 41(6), pp. 2090–2100.

    13. Rayman, MP. (2012). Selenium and human health. Lancet. 379(9822), pp. 1256–1268. doi:10.1016/S0140-6736(11)61452-9

    14. Neyrinck, AM. et al. (2017). Spirulina protects against hepatic inflammation in aging: An effect related to the modulation of the gut microbiota? Nutrients. 9(6), E633. doi:10.3390/nu9060633

    15. Salekzamani, S. Ebrahimi-Mameghani, M. Rezazadeh, K. (2018). The antioxidant activity of artichoke (Cynara scolymus): A systematic review and meta-analysis of animal studies. Phytotherapy Research. 33(1), pp. 55–71. doi:10.1002/ptr.6213

    16. Wirngo, FE. Lambert, MN. Jeppesen, PB. (2016). The physiological effects of dandelion (Taraxacum officinale) in type 2 diabetes. The Review of Diabetic Studies. 13(2-3), pp. 113–131.

    17. Cueni, LN. Detmar, M. (2008). The lymphatic system in health and disease. Lymphatic Research & Biology. 6(3-4), pp. 109–122. doi:10.1089/lrb.2008.1008

    18. Hespe, GE. et al. (2016). Exercise training improves obesity-related lymphatic dysfunction. The Journal of Physiology. 594(15), pp. 4267–4282. doi:10.1113/JP271757

    19. Department of Health. (2011). Summary information on legislation relating to the sale of food supplements. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/204303/Supplements_Summary__Jan_2012__DH_FINAL.doc.pdf. Last accessed: Oct. 29th 2019.

    20. Bourgoin, BP. et al. (1993). Lead content in 70 brands of dietary calcium supplements. American Journal of Public Health. 83(8), 1155–1160. doi:10.2105/ajph.83.8.1155

    21. Kennedy, DO. (2016). B vitamins and the brain: Mechanisms, dose and efficacy — A Review. Nutrients. 8(2), pp. 68–97. doi: 10.3390/nu8020068

    22. Pham-Huy, LA. He, H. Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Science : IJBS. 4(2), pp. 89–96.

    23. Jessen, NA. et al. (2015). The glymphatic system: A beginner's guide. Neurochemical Research. 40(12), pp. 2583–2599. doi:10.1007/s11064-015-1581-6

    24, Xie, L. et al. (2013). Sleep drives metabolite clearance from the adult brain. Science. 342 (6156), pp. 373–377.

    25. Jugdaohsingh, R. et al. (2000). Oligomeric but not monomeric silica prevents aluminum absorption in humans. The American Journal of Clinical Nutrition. 71(4), pp. 944–949. doi:10.1093/ajcn/71.4.944

    26. Howell, CA. et al. (2019). Investigation of the adsorption capacity of the enterosorbent Enterosgel for a range of bacterial toxins, bile acids and pharmaceutical drugs. Scientific Reports. 9, 5629. doi:10.1038/s41598-019-42176-z

    27. Araújo, LA. Addor, F. Campos, PM. (2016). Use of silicon for skin and hair care: an approach of chemical forms available and efficacy. Anais Brasileiros de Dermatologia. 91(3), pp. 331–335.

    28. Davenward, S. et al. (2013). Silicon-rich mineral water as a non-invasive test of the 'aluminium hypothesis' in Alzheimer's disease. Journal of Alzheimer's Disease. 33 (2), pp. 423–430.

    29. Yantasee, W. et al. (2010). Functionalized nanoporous silica for the removal of heavy metals from biological systems: Adsorption and application. ACS Applied Materials & Interfaces. 2(10), pp. 2749–2758.

    30. Royal College of Physicians. Every breath we take: The lifelong impact of air pollution. Report of a working party. London: RCP, 2016. (A must-read report).

    31. Welsh, JA. et al. (2019). Production-related contaminants (pesticides, antibiotics and hormones) in organic and conventionally produced milk samples sold in the USA. Public Health Nutrition. 22(16), pp. 2972-2980.

    32. Saunders, M. et al. (2012). Chlorpyrifos and neurodevelopmental effects: A literature review & expert elicitation on research and policy. Environmental Health: A Global Access Science Source. 11(Suppl. 1), S5.

    33. Dalsager, L. et al. (2019). Maternal urinary concentrations of pyrethroid and chlorpyrifos metabolites and attention deficit hyperactivity disorder (ADHD) symptoms in 2-4-year-old children from the Odense Child Cohort. Environmental Research. 176, 108533. doi:10.1016/j.envres.2019.108533 

    34. Winans, B. Humble, MC. Lawrence, BP. (2011). Environmental toxicants and the developing immune system: A missing link in the global battle against infectious disease? Reproductive Toxicology. 31(3), pp. 327–336. doi:10.1016/j.reprotox.2010.09.004 

  • 1. Source: https://www.ewg.org/personalcareproductsafetyact2.

    2. Source: https://www.gov.uk/government/publications/cosmetic-products-enforcement-regulations-2013/regulation-20091223-and-the-cosmetic-products-enforcement-regulations-2013-great-britain

    3. Herranz, N. Gil, J. (2018). Mechanisms and functions of cellular senescence. The Journal of Clinical Investigation. 128(4), pp. 1238–1246. doi:10.1172/JCI95148

    4. Van Deursen JM. (2014). The role of senescent cells in ageing. Nature. 509(7501), pp. 439–446. doi:10.1038/nature13193

    5. Baker, DJ. Petersen, RC. (2018). Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. The Journal of Clinical Investigation. 128(4), pp. 1208–1216. https://doi.org/10.1172/JCI95145

    6. Pizzorno J. (2014). Toxins from the gut. Integrative Medicine (Encinitas, Calif.). 13(6), pp. 8–11.

    7. Lichtenberger, LM. Romero, JJ. Dial, EJ. (2009). Gastrointestinal safety and therapeutic efficacy of parenterally administered phosphatidylcholine-associated indomethacin in rodent model systems. British Journal of Pharmacology. 157(2), 252–257. doi:10.1111/j.1476-5381.2009.00159.x

    8. Minich DM, Brown BI. (2019). A review of dietary (phyto)nutrients for glutathione support. Nutrients. 11(9), 2073. doi:10.3390/nu11092073.

    9. Schmitt, B. et al. (2015). Effects of N-acetylcysteine, oral glutathione (GSH) and a novel sublingual form of GSH on oxidative stress markers: A comparative crossover study. Redox Biology. 6, pp. 198–205.

    10. Maalouf, M. et al. (2007). Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience. 145(1), pp. 256–264. doi:10.1016/j.neuroscience.2006.11.065

    11. Pinto, A. et al. (2018). Anti-oxidant and anti-inflammatory activity of ketogenic diet: New perspectives for neuroprotection in Alzheimer's disease. Antioxidants (Basel, Switzerland). 7(5), E63.

    12. Yang, H. et al. (2019) Ketone bodies in neurological diseases: Focus on neuroprotection and underlying mechanisms. Frontiers in Neurology. 10, 585. doi:10.3389/fneur.2019.00585

    13. Source: US National Institute of Health. Available at: https://ods.od.nih.gov

    14. Source: NHS UK. Available at: https://www.nhs.uk/conditions/vitamins-and-minerals/vitamin-d

    15. Stone, TW. et al. (2018). Obesity and cancer: Existing and new hypotheses for a causal connection. EBioMedicine. 30, pp. 14–28. doi:10.1016/j.ebiom.2018.02.022

    16. Source World Obesity. Available at: https://www.worldobesity.org/news/one-billion-people-globally-estimated-to-be-living-with-obesity-by-2030#:~:text=The%20World%20Obesity%20Atlas%202022,living%20with%20obesity%20by%202030.

    17. Bold, J. (2012). Considerations for the diagnosis and management of sulphite sensitivity. Gastroenterology and Hepatology from Bed to Bench. 5(1):3-6.

    18. Zhang, W. et al. (2013). Activation of transsulfuration pathway by salvianolic acid a treatment: A homocysteine-lowering approach with beneficial effects on redox homeostasis in high-fat diet-induced hyperlipidemic rats. Nutrition & Metabolism. 10(article 68). doi:10.1186/1743-7075-10-68

    19. Oxford, J. Hughes, A. (2014). A lipid-rich gestational diet predisposes offspring to nonalcoholic fatty liver disease: A potential sequence of events. Hepatic Medicine: Evidence & Research. 6, pp. 15–23.

    20. Barbosa, PO. et al. (2019). Açaí (Euterpe oleracea Martius) supplementation in the diet during gestation and lactation attenuates liver steatosis in dams and protects offspring. European Journal of Nutrition. doi:10.1007/s00394-019-02040-2

    21. Adlimoghaddam, A. Sabbir, MG. Albensi, BC (2016) Ammonia as a potential neurotoxic factor in Alzheimer's disease. Frontiers in Molecular Neuroscience. 9, article 57. doi:10.3389/fnmol.2016.00057

    22. Albrecht, J. Zielińska, M. Norenberg, MD. (2010). Glutamine as a mediator of ammonia neurotoxicity: A critical appraisal. Biochemical Pharmacology. 80(9), pp. 1303–1308.

    23. Soerensen, M. et al. (2009). The Mn-superoxide dismutase single nucleotide polymorphism rs4880 and the glutathione peroxidase 1 single nucleotide polymorphism rs1050450 are associated with aging and longevity in the oldest old. Mechanisms of Ageing & Development. 130(5), pp. 308–314. doi:10.1016/j.mad.2009.01.005

    24. DiFrancisco-Donoghue, J. et al. (2012). Effects of exercise and B vitamins on homocysteine and glutathione in Parkinsons Disease: A randomized trial. Neurodegenerative Diseases. 10, pp. 127–134. 

    25. Delhey, LM. et al. (2018) Comparison of treatment for metabolic disorders associated with autism: Reanalysis of three clinical trials. Frontiers in Molecular Neuroscience. 12, article 19.Ribas, V. García-Ruiz, C. Fernández-Checa, JC. (2014) Glutathione and mitochondria. Frontiers in Pharmacology. 5, article 151. doi:10.3389/fphar.2014.00151

    26. Delhey, LM. et al. (2018) Comparison of treatment for metabolic disorders associated with autism: Reanalysis of three clinical trials. Frontiers in Molecular Neuroscience. 12, article 19.

    27. Oliveira, AN. Hood, DA. (2019). Exercise is mitochondrial medicine for muscle. Sports Medicine & Health Science. 1 (1), pp. 11-18. doi:10.1016/j.smhs.2019.08.008

    28. Belyaeva, EA. et al. (2012). Mitochondrial electron transport chain in heavy metal-induced neurotoxicity: Effects of cadmium, mercury, and copper. The Scientific World Journal. 2012, 136063.

    29. Cannino, G. et al. (2009). Cadmium and mitochondria. Mitochondrion. 9(6), pp. 377–384.

    30. Source: https://www.atsdr.cdc.gov/phs/phs.asp?id=1076&tid=34

    31. Krewski, D. et al. (2007). Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. Journal of Toxicology & Environmental Health. Part B, Critical Reviews. 10(Suppl. 1), pp. 1–269. doi:10.1080/10937400701597766. A MUST READ.

    32. Gonzalez, MA. et al. (2004). Biliary secretory function in rats chronically intoxicated with aluminum. Toxicology Science. 79(1), pp. 189–195. doi:10.1093/toxsci/kfh085

    33. Colomina, MT. et al. (1994). Lack of maternal and developmental toxicity in mice given high doses of aluminium hydroxide and ascorbic acid during gestation. Pharmacology & Toxicology. 74(6), pp. 236–239.

    34. Harris, WR. Wang, Z. Hamada, YZ. (2003). Competition between transferrin and the serum ligands citrate and phosphate for the binding of aluminum. Inorganic Chemistry. 42(10), pp. 3262–3273.

    35. Bellés, M. et al. (2001). Effects of oral aluminum on essential trace elements metabolism during pregnancy. Biological Trace Element Research. 79(1), pp. 67–81.

    36. Vittori, D. et al. (1999). Morphologic and functional alterations of erythroid cells induced by long-term ingestion of aluminium. Journal of Inorganic Biochemistry. 76(2), pp. 113–120.

    37. Reinke, C. M. Breitkreutz, J. Leuenberger, H. (2003). Aluminium in over-the-counter drugs. Drug Safety. 26(14), pp. 1011–1025. doi:10.2165/00002018-200326140-00003 

    38. Rondeau, V. et al (2008). Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: Findings from 15-Year follow-up of the PAQUID cohort. American Journal of Epidemiology. 169(4), pp. 489–496. doi:10.1093/aje/kwn348 

    39. Authier, FJ. et al. (2001). Central nervous system disease in patients with macrophagic myofasciitis. Brain. 124(Pt 5), pp. 974-83. doi:10.1093/brain/124.5.974.

    40. Gherardi, RK. et al. (2001). Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain. 124(9), pp. 1821–1831. doi:10.1093/brain/124.9.1821

    41. Mold, M. et al. (2020). Aluminum and amyloid-β in familial Alzheimer’s disease. Journal of Alzheimer’s Disease. (73)4, pp. 1627–1635. doi:10.3233/jad-191140

    42. Mirza, A. et al. (2017). Aluminium in brain tissue in familial Alzheimer’s disease. Journal of Trace Elements in Medicine & Biology. 40, pp. 30–36. doi:10.1016/j.jtemb.2016.12.001 

    43. Linhart, C. et al. (2020). Aluminium in brain tissue in non-neurodegenerative/non-neurodevelop-mental disease: A comparison with multiple sclerosis. Exposure & Health. doi:10.1007/s12403-020-00346-9

    44. Jugdaohsingh, R. et al. (2000). Oligomeric but not monomeric silica prevents aluminum absorption in humans. The American Journal of Clinical Nutrition. 71(4), pp. 944–949. doi:10.1093/ajcn/71.4.944 

    45. Cui, J. et al. (2017). Silica nanoparticles alleviate cadmium toxicity in rice cells: Mechanisms and size effects. Environmental Pollution. 228, pp. 363–369. doi:10.1016/j.envpol.2017.05.014 

    46. Ward, ZJ. et al. (2019). Projected U.S. state-level prevalence of adult obesity and severe obesity. New England Journal of Medicine. 381, pp. 2440-2450. doi:10.1056/NEJMsa1909301.

    47. Hall, KD. et al. (2019). Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell Metabolism. 30, pp. 67–77. doi:10.1016/j.cmet.2019.05.008 

    48. Siegel, RL. Miller, KD. Jemal, A. (2020), Cancer statistics, 2020. CA: A Cancer Journal for Clinicians. 70, pp. 7–30. doi:10.3322/caac.21590

    49. Source: https://www.cancerresearchuk.org

    50. Source: https://www.drugabuse.gov/drugs-abuse/opioids/opioid-overdose-crisis#one.

    51. Pollack, GH. (2018). The fourth phase of water: Implications for energy, life, and health. In: Artmann, G. et al. Biological, Physical and Technical Basis of Cell Engineering. Singapore: Springer. pp. 309–320.

    52. Chamberlin, K. et al. (2014). Analysis of the charge exchange between the human body and ground: Evaluation of "earthing" from an electrical perspective. Journal of Chiropractic Medicine. 13(4), pp. 239–246. https://doi.org/10.1016/j.jcm.2014.10.001

    53. Sinatra, ST. et al. (2017). Electric nutrition: The surprising health and healing benefits of biological grounding (earthing). Alternative Therapies in Health & Medicine. 23(5), pp. 8–16.

    54. Lindqvist, PG. et al. (2016). Avoidance of sun exposure as a risk factor for major causes of death: a competing risk analysis of the Melanoma in Southern Sweden cohort. Journal of Internal Medicine. 280 (4), pp. 375–387.

    55. Hymas, C. (2018). A decade of smartphones: We now spend an entire day every week online. Available: https://www.telegraph.co.uk/news/2018/08/01/decade-smartphones-now-spend-entire-day-every-week-online/. Last accessed 7th Feb. 2019.

    56. Knight, R. (2018). The average Briton spends almost 10 years of their life watching TV. Available: https://www.independent.co.uk/news/media/tv-radio/average-watching-tv-briton-10-years-life-research-a8367526.html. Last accessed 9th Feb. 2019.

    57. British Broadcasting Corporation. (2018). Report reveals latest UK TV watching trends. Available: https://www.tvlicensing.co.uk/about/media-centre/news/report-reveals-latest-uk-tv-watching-trends-NEWS35. Last accessed 9th Feb. 2019.

    58. Source: https://www.standard.co.uk/lifestyle/health/why-you-need-to-try-an-infrared-sauna-this-winter-a3665661.html

    59. Sellers W. (2017). Asthma pressurised metered dose inhaler performance: Propellant effect studies in delivery systems. Allergy, asthma, & clinical immunology : Official Journal of the Canadian Society of Allergy & Clinical Immunology. 13, 30. doi:10.1186/s13223-017-0202-0

    60. French, EA. et al. (2016). Iodide residues in milk vary between iodine-based teat disinfectants. Journal of Food Science. 81(7), T1864–T1870. doi:10.1111/1750-3841.13358 

    61. Bath, SC. et al. (2017). Iodine concentration of milk-alternative drinks available in the UK in comparison with cows' milk. The British Journal of Nutrition. 118(7), pp. 525–532.

    62. Leung, AM. et al. (2011). Iodine status and thyroid function of Boston-area vegetarians and vegans. Journal of Clinical Endocrinology & Metabolism. 96(8), E1303–1307. doi:10.1210/jc.2011-0256.

    63. Leung, A. M. Braverman, LE. (2014). Consequences of excess iodine. Nature Reviews. Endocrinology. 10(3), pp. 136–142. doi:10.1038/nrendo.2013.251.

    64. Brewer, J. et al (2013). Detection of mycotoxins in patients with chronic fatigue syndrome. Toxins. 5(4), pp. 605–617. doi:10.3390/toxins5040605.

    65. Winkler, J. Ghosh, S. (2018). Therapeutic Potential of Fulvic Acid in Chronic Inflammatory Diseases and Diabetes. Journal of Diabetes Research. 2018, 5391014. doi:10.1155/2018/5391014

    66. Huxley, R. (2009). Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 Diabetes Mellitus. Archives of Internal Medicine. 169(22), pp. 2053–2063. 

    67. Gökcen, BB. Şanlier, N. (2019). Coffee consumption and disease correlations. Critical Reviews in Food Science & Nutrition. 59(2), pp. 336–348.

    68. Eskelinen, MH. Kivipelto, M. (2010). Caffeine as a protective factor in dementia and alzheimer’s disease. Journal of Alzheimer’s Disease. 20(suppl. 1), S167–S174.

    69. You, DC. et al. (2011). Possible health effects of caffeinated coffee consumption on alzheimer’s disease and cardiovascular disease. Toxicological Research. 27(1), pp. 7–10.

    70. Hu, G. et al. (2007). Coffee and tea consumption and the risk of Parkinson’s disease. Movement Disorders. 22(15), pp 2242–2248. doi:10.1002/mds.21706 

    71. Shalene, JHA. et al. (2014). Shade coffee: Update on a disappearing refuge for biodiversity. BioScience. 64(5), pp. 416–428.

    72. Mojska, H. Gielecińska, I. (2013). Studies of acrylamide level in coffee and coffee substitutes: influence of raw material and manufacturing conditions. Annals of the National Institute of Hygiene. 64(3), pp. 173–81.

    73. Andrzejewski, D. et al. (2004). Analysis of coffee for the presence of acrylamide by LC-MS/MS. Journal of Agricultural and Food Chemistry. 52(7), pp. 1996–2002.

    74. Bidel, S. Tuomilehto, J. (2010). The emerging health benefits of coffee with an emphasis on type 2 diabetes and cardiovascular disease. European Endocrinology. 9(2), pp. 99–106.

    75. Higdon, JV. Frei, B. (2006). Coffee and health: A review of recent human research. Critical Reviews in Food Science & Nutrition. 46(2), pp. 101–123.

    76. Butt, MS. Sultan, MT. (2011). Coffee and its consumption: Benefits and risks. Critical Reviews in Food Science & Nutrition. 51(4), pp. 363–373. doi:10.1080/10408390903586412.

    77. Ludwig, IA. et al. (2014). Variations in caffeine and chlorogenic acid contents of coffees: What are we drinking? Food & Function. 5, pp. 1718–1726.

    78. Mills, CE. et al. (2013). The effect of processing on chlorogenic acid content of commercially available coffee. Food Chemistry. 141(4), pp. 3335–3340.

    79. Hayashi, K. et al. (2016). Laughter is the best medicine? A cross-sectional study of cardio-vascular disease among older Japanese adults. Journal of Epidemiology. 26(10), pp. 546–552.

  • 1.

  • 1. ​Source: APA’s survey finds constantly checking electronic devices linked to significant stress for most Americans. Available at: https://www.apa.org/news/press/releases/2017/02/checking-devices

    2. Boers, E. et al. (2019). Association of screen time and depression in adolescence. JAMA Pediatrics. 173(9), pp. 853–859. doi:10.1001/jamapediatrics.2019.1759

    3. Santos, RMS. et al. (2023). The associations between screen time and mental health in adolescents: A systematic review. BMC Psychology. 11, 127. doi:10.1186/s40359-023-01166-7

    4. Riehm, KE. et al. (2029). Associations between time spent using social media and internalizing and externalizing problems among US youth. JAMA Psychiatry. 76(12), pp. 1266–1273. doi:10.1001/jamapsychiatry.2019.2325

  • 1. Proudfoot, AT. Krenzelok, EP. Vale, JA. (2004). Position paper on urine alkalisation. Journal of Toxicology. Clinical Toxicology. 42(1), pp. 1-26. doi: 10.1081/clt-120028740